Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 7775, 2022 12 15.
Article in English | MEDLINE | ID: covidwho-2160213

ABSTRACT

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.


Subject(s)
COVID-19 , Convalescence , Thrombosis , Humans , Multiomics , SARS-CoV-2 , Leukocytes, Mononuclear , Proteomics , Membrane Proteins
2.
Oxf Open Immunol ; 2(1): iqab014, 2021.
Article in English | MEDLINE | ID: covidwho-1377979

ABSTRACT

Protease inhibitors influence a range of innate immunity and inflammatory pathways. We quantified plasma concentrations of key anti-inflammatory protease inhibitors in chronic haemodialysis patients with coronavirus disease 2019 (COVID-19). The samples were collected early in the disease course to determine whether plasma protease inhibitor levels associated with the presence and severity of COVID-19. We used antibody-based immunoassays to measure plasma concentrations of C1 esterase inhibitor, alpha2-macroglobulin, antithrombin and inter-alpha-inhibitor heavy chain 4 (ITIH4) in 100 serial samples from 27 haemodialysis patients with COVID-19. ITIH4 was tested in two assays, one measuring intact ITIH4 and another also detecting any fragmented ITIH4 (total ITIH4). Control cohorts were 32 haemodialysis patients without COVID-19 and 32 healthy controls. We compared protease inhibitor concentration based on current and future COVID-19 severity and with C-reactive protein. Results were adjusted for repeated measures and multiple comparisons. Analysis of all available samples demonstrated lower plasma C1 esterase inhibitor and α2M and higher total ITIH4 in COVID-19 compared with dialysis controls. These differences were also seen in the first sample collected after COVID-19 diagnosis, a median of 4 days from diagnostic swab. Plasma ITIH4 levels were higher in severe than the non-severe COVID-19. Serum C-reactive protein correlated positively with plasma levels of antithrombin, intact ITIH4 and total ITIH4. In conclusion, plasma protease inhibitor concentrations are altered in COVID-19.

3.
Front Immunol ; 12: 671052, 2021.
Article in English | MEDLINE | ID: covidwho-1231338

ABSTRACT

We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.


Subject(s)
COVID-19/blood , Complement Pathway, Mannose-Binding Lectin , Lectins/blood , Renal Insufficiency, Chronic/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/immunology , COVID-19/pathology , Female , Humans , Lectins/immunology , Male , Middle Aged , Renal Insufficiency, Chronic/ethnology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , SARS-CoV-2/immunology
4.
Elife ; 102021 03 11.
Article in English | MEDLINE | ID: covidwho-1128149

ABSTRACT

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n = 256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. Two hundred and three proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3), and epithelial injury (e.g. KRT19). Machine-learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets.


COVID-19 varies from a mild illness in some people to fatal disease in others. Patients with severe disease tend to be older and have underlying medical problems. People with kidney failure have a particularly high risk of developing severe or fatal COVID-19. Patients with severe COVID-19 have high levels of inflammation, causing damage to tissues around the body. Many drugs that target inflammation have already been developed for other diseases. Therefore, to repurpose existing drugs or design new treatments, it is important to determine which proteins drive inflammation in COVID-19. Here, Gisby, Clarke, Medjeral-Thomas et al. measured 436 proteins in the blood of patients with kidney failure and compared the levels between patients who had COVID-19 to those who did not. This revealed that patients with COVID-19 had increased levels of hundreds of proteins involved in inflammation and tissue injury. Using a combination of statistical and machine learning analyses, Gisby et al. probed the data for proteins that might predict a more severe disease progression. In total, over 200 proteins were linked to disease severity, and 69 with increased risk of death. Tracking how levels of blood proteins changed over time revealed further differences between mild and severe disease. Comparing this data with a similar study of COVID-19 in people without kidney failure showed many similarities. This suggests that the findings may apply to COVID-19 patients more generally. Identifying the proteins that are a cause of severe COVID-19 ­ rather than just correlated with it ­ is an important next step that could help to select new drugs for severe COVID-19.


Subject(s)
COVID-19/blood , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/virology , Renal Dialysis/methods , Aged , Biomarkers/blood , COVID-19/mortality , COVID-19/virology , Female , Forecasting , Hospitalization , Humans , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/therapy , Longitudinal Studies , Male , Middle Aged , Prognosis , Proteomics/methods , Renal Dialysis/mortality , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Clin Kidney J ; 13(5): 889-896, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1109191

ABSTRACT

BACKGROUND: Complement activation may play a pathogenic role in patients with severe coronavirus disease 2019 (COVID-19) by contributing to tissue inflammation and microvascular thrombosis. METHODS: Serial samples were collected from patients receiving maintenance haemodialysis (HD). Thirty-nine patients had confirmed COVID-19 and 10 patients had no evidence of COVID-19. Plasma C5a and C3a levels were measured using enzyme-linked immunosorbent assay. RESULTS: We identified elevated levels of plasma C3a and C5a in HD patients with severe COVID-19 compared with controls. Serial sampling identified that C5a levels were elevated prior to clinical deterioration in patients who developed severe disease. C3a more closely mirrored both clinical and biochemical disease severity. CONCLUSIONS: Our findings suggest that activation of complement plays a role in the pathogenesis of COVID-19, leading to endothelial injury and lung damage. C5a may be an earlier biomarker of disease severity than conventional parameters such as C-reactive protein and this warrants further investigation in dedicated biomarker studies. Our data support the testing of complement inhibition as a therapeutic strategy for patients with severe COVID-19.

6.
Kidney Med ; 3(1): 54-59.e1, 2021.
Article in English | MEDLINE | ID: covidwho-1065667

ABSTRACT

RATIONALE & OBJECTIVE: A number of serologic tests for immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are now commercially available, including multiple lateral flow immunoassays (LFIAs), which have the advantage of being inexpensive and easy to use, without the reliance on laboratory facilities. However, data on the development of humoral immunity to SARS-CoV-2 in patients with kidney disease is limited, and the utility of an LFIA to test for antibodies in these patients has not been assessed. STUDY DESIGN: Observational study. SETTING & PARTICIPANTS: 60 patients (40 hemodialysis and 20 kidney transplant recipients) with SARS-CoV-2 infection confirmed by viral reverse transcriptase-polymerase chain reaction (RT-PCR) testing and 88 historic negative-control samples (collected before September 2019). TEST: A commercially available LFIA to test for SARS-CoV-2 IgG in patients with infection confirmed by viral RT-PCR testing. OUTCOMES: Sensitivity and specificity of the LFIA to detect SARS-CoV-2 IgG in dialysis patients and transplant recipients. RESULTS: 56/58 (96.6%) patients (38/39 hemodialysis and 18/19 transplant recipients) tested positive for SARS-CoV-2 IgG. 5/7 (71.4%) patients who were negative on preliminary testing had detectable IgG when retested more than 21 days postdiagnosis. Median times to first and second tests after diagnosis were 17 (interquartile range, 15-20) and 35 (interquartile range, 30-39) days, respectively. Calculation of test characteristics gave sensitivity of 96.6% (95% CI, 88.3%-99.4%) and specificity of 97.7% (95% CI, 92.0-99.6%). LIMITATIONS: Possible exposure to other beta-coronaviruses that may cross-react with the antigen used in the LFIA cannot be excluded. CONCLUSIONS: Symptomatic dialysis patients and transplant recipients commonly develop an immune response against SARS-CoV-2 infection that can be detected using an LFIA. Used diligently, an LFIA could be used to help screen the dialysis populations or confirm exposure on a patient level, especially in facilities in which laboratory resources are limited.

SELECTION OF CITATIONS
SEARCH DETAIL